MBL epidemiology

Metallo-β-lactamase-producing pathogens may be an increasing and substantial threat for your patients1,2

Metallo-β-lactamase (MBL)-producing bacteria are on the rise.1 Their epidemiology is global, and they are spreading, representing a significant challenge for clinical management and public health.1,2

Global epidemiology

National epidemiology

Distribution of the most prevalent MBLs worldwide for Enterobacterales1
Distribution of most prevalent metallo β lactamase MBLs worldwide Enterobacterales

Most prevalent carbapenemase in the country

  • NDM NDM
  • VIM VIM
  • IMP IMP
  • SPM SPM

Most prevalent MBL group in countries where serine carbapenemases (KPC or OXA-48-like) are more prevalent

  • NDM NDM
  • VIM VIM
  • IMP IMP
  • SPM SPM
Extracted from Boyd SE, et al. Antimicrob Agents Chemother 2020;64:e00397-20.1

The COVID-19 pandemic saw an increase in infections caused by MBL-producing pathogens, contributing to antimicrobial resistance (AMR).3–5

Results from the Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report on the impacts of COVID-19 on AMR show that there was an:4

Bacteria with NDM, VIM and IMP enzymes have been identified in community, hospital and environmental settings throughout the world.1

What has been happening in India at a national level?

The incidence of carbapenemases in India over time9

Carbapenemase trend over the years among overall CRE from ICU settings including CR-E.coli and CR-Klebsiella spp.

Carbapenemases

Incidence of carbapenemases in Enterobacterales from 2018 to 2022

No. of confirmed carbapenemases 2018 2019 2020 2021 2022
Total Enterobacterales #FEEA31 241 329 578 552 568
CRE #94C201 77 122 229 229 234
NDM #0095FF 35 80 155 137 174
OXA-48 #0DBDBA 38 75 148 156 141
KPC #F49C34 0 0 4 1 0
Total Enterobacterales

Incidence of carbapenemases in Enterobacterales from 2018 to 2022

No. of confirmed carbapenemases 2018 2019 2020 2021 2022
Total Enterobacterales #FEEA31 241 329 578 552 568
CRE

Incidence of carbapenemases in Enterobacterales from 2018 to 2022

No. of confirmed carbapenemases 2018 2019 2020 2021 2022
CRE #94C201 77 122 229 229 234
NDM

Incidence of carbapenemases in Enterobacterales from 2018 to 2022

No. of confirmed carbapenemases 2018 2019 2020 2021 2022
NDM #0095FF 35 80 155 137 174
OXA-48

Incidence of carbapenemases in Enterobacterales from 2018 to 2022

No. of confirmed carbapenemases 2018 2019 2020 2021 2022
OXA-48 #0DBDBA 38 75 148 156 141
KPC

Incidence of carbapenemases in Enterobacterales from 2018 to 2022

No. of confirmed carbapenemases 2018 2019 2020 2021 2022
KPC #F49C34 0 0 4 1 0
Carbapenemases

Incidence of carbapenemases in Enterobacterales from 2018 to 2022

No. of confirmed carbapenemases 2018 2019 2020 2021 2022
Total E.coli #FEEA31 81 85 179 178 195
CR-E.coli #94C201 15 17 39 45 48
NDM #0095FF 11 16 36 41 48
OXA-48 #0DBDBA 2 2 10 5 6
KPC #F49C34 0 0 0 0 0
Total E.coli

Incidence of carbapenemases in Enterobacterales from 2018 to 2022

No. of confirmed carbapenemases 2018 2019 2020 2021 2022
Total E.coli #FEEA31 81 85 179 178 195
CR-E.coli

Incidence of carbapenemases in Enterobacterales from 2018 to 2022

No. of confirmed carbapenemases 2018 2019 2020 2021 2022
CR-E.coli #94C201 15 17 39 45 48
NDM

Incidence of carbapenemases in Enterobacterales from 2018 to 2022

No. of confirmed carbapenemases 2018 2019 2020 2021 2022
NDM #0095FF 11 16 36 41 48
OXA-48

Incidence of carbapenemases in Enterobacterales from 2018 to 2022

No. of confirmed carbapenemases 2018 2019 2020 2021 2022
KPC #0DBDBA 2 2 10 5 6
KPC

Incidence of carbapenemases in Enterobacterales from 2018 to 2022

No. of confirmed carbapenemases 2018 2019 2020 2021 2022
OXA-48 #F49C34 0 0 0 0 0
Carbapenemases

Incidence of carbapenemases in Enterobacterales from 2018 to 2022

No. of confirmed carbapenemases 2018 2019 2020 2021 2022
Total Klebsiella #FEEA31 100 155 285 278 291
CR- Klebsiella spp. #94C201 56 88 161 163 175
NDM #0095FF 22 47 94 80 116
OXA-48 #0DBDBA 36 64 133 140 132
KPC #F49C34 0 0 2 1 0
Total Klebsiella spp.

Incidence of carbapenemases in Enterobacterales from 2018 to 2022

No. of confirmed carbapenemases 2018 2019 2020 2021 2022
Total Klebsiella spp. #FEEA31 100 155 285 278 291
CR- Klebsiella spp.

Incidence of carbapenemases in Enterobacterales from 2018 to 2022

No. of confirmed carbapenemases 2018 2019 2020 2021 2022
CR- Klebsiella spp. #94C201 56 88 161 163 175
NDM

Incidence of carbapenemases in Enterobacterales from 2018 to 2022

No. of confirmed carbapenemases 2018 2019 2020 2021 2022
NDM #0095FF 22 47 94 80 116
OXA-48

Incidence of carbapenemases in Enterobacterales from 2018 to 2022

No. of confirmed carbapenemases 2018 2019 2020 2021 2022
OXA-48 #0DBDBA 36 64 133 140 132
KPC

Incidence of carbapenemases in Enterobacterales from 2018 to 2022

No. of confirmed carbapenemases 2018 2019 2020 2021 2022
KPC #F49C34 0 0 2 1 0

metallo β lactamase MBL infection burden Enterobacterales

The Burden

Infections caused by MBL-producing Enterobacterales cause higher mortality rates compared to non-carbapenemase producing CRE10–13

Explore in detail the burden of MBL-producing Enterobacterales on patient outcomes.

Understand the burden

Understanding MBLs and carbapenemases.png

Understanding MBLs

Did you know that MBLs account for the majority of the ‘Big Five’ carbapenemases?14,15

Discover more about the ‘Big Five’ carbapenemases, including MBLs.

More about the 'Big Five'

Abbreviations
AMR, antimicrobial resistance; CRE, carbapenem-resistant Enterobacterales; GLASS, Global Antimicrobial Resistance and Use Surveillance System; IMP, imipenemase metallo-β-lactamase; KPC, Klebsiella pneumoniae carbapenemase; MBL, metallo-β-lactamase; NDM, New Delhi metallo-β-lactamase; OXA, oxacillinase; SME, Serratia marcescens enzymes; SPM, Sao Paulo metallo-β-lactamase; VIM, Verona Integron-encoded metallo-β-lactamase.
References
  1. Boyd SE, et al. Antimicrob Agents Chemother 2020;64:e00397-20.
  2. Wu W, et al. Clin Microbiol Rev 2019;32:e00115-18.
  3. Mojica MF, et al. Lancet Infect Dis 2022;22(1):e28–e34.
  4. Tomczyk S, et al. J Antimicrob Chemother 2021;76(11):3045–58.
  5. Ayoub Moubareck C, et al. Front Cell Infect Microbiol 2022;12:823626.
  6. Sader HS, et al. J Antimicrob Chemother 2021;76:659–66.
  7. Sader HS, et al. Eur J Clin Microbiol Infect Dis 2022;41:477–87.
  8. Meletis G. T her Adv Infect Dis 2016;3:15–21.
  9. Abstracts at CIDSCON 2024. Journal of Clinical Infectious Diseases Society 2(3):p 163-292, Jul–Sep 2024. | DOI:10.4103/CIDS.CIDS_56_24
  10. Tamma PD, et al. Clin Infect Dis 2017;64:257–64.
  11. de Jager P, et al. PLoS One 2015;10:e0123337.
  12. Daikos GL, et al. Antimicrob Agents Chemother 2009;53:1868–73.
  13. Hayakawa K, et al. J Antimicrob Chemother 2020;75:697–708.
  14. Henderson J, et al. J Hosp Infect 2020;104:12–19.
  15. Bonnin RA, et al. Front Med (Lausanne) 2021;7:616490.
  16. Bakthavatchalam YD et al .In vitro activity of ceftazidime-avibactam and its comparators against carbapenem resistant Enterobacterales collected across India: results from ATLAS surveillance 2018 to 2019. Microbiol Infect Dis. 2022;103:115652.